Skip to main content

RESEARCHERS USED A NEW TECHNOLOGY FOR BIOPRINTING ADULT NEURON CELLS!


A group of researchers has managed to maintain a high level of cell viability and functionality by using laser-assisted bioprinting technology to print adult neuron cells. The method known as laser-induced side-transfer (LIST) enables three-dimensional bioprinting with higher efficiency by improving existing bioprinting techniques using bioinks with different viscosities.

In the study, dorsal root ganglion (DRG) neurons from the peripheral nervous system of mice were used. Neurons suspended in bioink were loaded into a square capillary located on a biocompatible substrate. Low-energy laser pulses focused on the midpoint of the capillary, printing the cell-loaded bioink in droplets.

Figure 1. Bioprinting system


After bioprinting, different tests were applied. In the viability test, it was concluded that 86 percent of the cells survived two days after printing. The researchers note that when using low-energy laser pulses, the vitality rate increases. When higher laser energy is used, the probability of cell damage increases. Other tests performed included measuring neurite outgrowth, sensitivity to noxious stimuli, and ability to release neuropeptides. The results were promising and it is thought that the technique could make an important contribution to bioprinting technology.

Hamid Orimi says that fewer animals will be used in experiments and that these developments will be beneficial not only for humans but also for animals. As a result of these studies, many tests will be tested on tissues instead of animals and more accurate results will be obtained.

                                                                Credit: Public Domain 


ARAŞTIRMACILAR YETİŞKİN SİNİR HÜCRELERİNİN BİYOBASIMI İÇİN YENİ BİR TEKNOLOJİ KULLANDI!


Bir grup araştırmacı, yetişkin nöron hücrelerini basmak için lazer destekli biyobaskı teknolojisini kullanarak hücre canlılığını ve işlevselliğini yüksek düzeyde tutmayı başardı. Lazer kaynaklı yan transfer (LIST) olarak bilinen yöntem, farklı viskoziteye sahip biyomürekkepleri kullanarak mevcut biyobasım tekniklerini geliştirerek daha yüksek verime sahip üç boyutlu biyobasıma olanak sağlamaktadır. 

Çalışmada, farelerin periferik sinir sisteminden alınan dorsal kök ganglion (DRG) nöronları kullanıldı. Biyomürekkep içinde süspanse edilen nöronlar, biyouyumlu bir substratın üzerinde bulunan kare bir kılcal damarın içine yüklendi. Düşük enerjili lazer darbeleri, kılcal damarın orta noktasına odaklanarak hücre yüklü biyomürekkebin damlacıklar halinde basılmasını sağladı. 

Biyobasımdan sonra farklı testler uygulandı. Yapılanan canlılık testinde hücrelerin yüzde 86'sının baskıdan iki gün sonra hayatta kaldığı sonucuna ulaşıldı. Araştırmacılar, düşük enerjiye sahip lazer darbeleri kullandığında canlılık oranının arttığını belirtiyor. Daha yüksek lazer enerjisi kullanıldığında ise hücrelerin zarar görme olasılığı yükselmektedir. Yapılan diğer testler arasında ise nörit büyümesini, zararlı uyaranlara karşı duyarlılığı ve nöropeptidleri serbest bırakma yeteneğini ölçmek de vardı. Sonuçlar umut vaat ediyordu ve tekniğin biyobaskı teknolojisi adına önemli bir katkı sunabileceği düşünülüyor.

Hamid Orimi, deneylerde daha az hayvan kullanılacağını ve bu gelişmelerin sadece insanlar için değil hayvanlar için de faydalı olacağını söylüyor. Bu çalışmaların neticesinde birçok test hayvanlar yerine dokular üzerinde denenecek ve daha doğru sonuçlar elde edilecek.

REFERENCES

https://www.sciencedaily.com/releases/2021/09/210921134345.htm

Bioprinting of Adult Dorsal Root Ganglion (DRG) Neurons Using Laser-Induced Side Transfer (LIST)

Katiane Roversi

Hamid Ebrahimi Orimi

Marcelo Falchetti

Edroaldo Lummertz da Rocha

Sebastien Talbot

Christos Boutopoulos

Comments

Popular posts from this blog

3D BIOPRINTING TECHNIQUE CONTROLS CELL ORIENTATION!  Using 3D bioprinting technology, tissue scaffolds that mimic tissues can be printed. Controlling cellular organization in these scaffolds designed for tissue engineering studies is a complex and challenging process. Produced cellular scaffolds must perform like natural tissues. To achieve this, cells must have a regular structure in terms of spatial distribution and alignment. In this study, cellular orientation was controlled by the technique developed for fast, simple and cost-effective printing of multi-compartment hydrogel fibers. Alginate and GELMA hydrogel fibers were printed in the determined pattern with the static mixer integrated into the coaxial microfluidic system. In the engineered microstructure, GelMA chambers provide a suitable environment for the cell, while alginate chambers offer morphological and mechanical properties that guide cellular orientation. It has been demonstrated in this study that cellular alignment c
NOSE CARTRIDGE PRINTED WITH 3D BIOPRINTING TECHNOLOGY! A team of University of Alberta researchers has produced a specially shaped cartilage u sing three-dimensional bioprinting technology  that can be used in surgical applications. The hydrogel prepared with cells taken from the patient was used in bioprinting. Surgeons reshape the cartilage taken from the patient's ribs to fit the size and shape required for reconstructive surgery and transplant the patient. With this traditional procedure, however, there is a risk of complications in the patient. The other problem is that the rib compartment that protects the lungs needs to be opened to reconstruct the nose. This region has a vital anatomical importance. The patient's lungs may have collapsed. Researchers say that this study is an example of regenerative medicine. The cartilage, which is specially printed for the patient and grown in the laboratory, has the potential to eliminate the risk of collapse in the lungs, infection