Skip to main content

3D-BIOPRINTED TISSUES CAN BE STORED IN THE FREEZER UNTIL THE NEED!


The short shelf life of 3D tissues limits their clinical use. In the case of organ transplantation, the tissue produced by the bioprinting method must be transported quickly to the place where it is needed. Otherwise, the 3D-bioprinted tissue will lose its vitality.


Researchers have published a study combining 3D bioprinting and cryopreservation technique to create tissues that can be stored in a -196°C freezer and defrosted within minutes for use when needed.


Biomedical engineer Y. Shrike Zhang says that there is no shelf life in the traditional bioprinting method, 3D tissues are used after bioprinting. With the cryobioprinting method, you can bioprint as much as you want and store the products in a frozen state.


The bioink is flowed through the nozzle to create the defined shape, allowing the structure to form layer by layer. Bioink consists of a gelatin-like scaffold in which living cells are embedded. In cryobioprinting, the hydrogel is made on a cold plate maintained at -20 °C. After printing, the tissues are transported to cryogenic conditions for long-term storage.


Bioprinting at low temperatures allows complex shapes to be created. The bioink printed on the cold plate freezes in milliseconds and the structure does not lose its original shape. In this way, independent 3 dimensional structures that can withstand their own weight are formed.


For cells to survive at cryogenic temperatures, a cryopreservative agent must be used that prevents osmotic shock and limits the formation of ice crystals that can damage the cell membrane. Y. Shrike Zhang and his team also investigated the combination of cryopreservative agents that provide the highest cell viability.


It has been shown that tissues can last for at least 3 months before being brought back to life. Tissues produced by the bioprinting method will be able to be frozen for a long time, allowing greater collaboration among researchers to develop these applications. 


Credit : Freeform cell-laden cryobioprinting for shelf-ready tissue fabrication and storage.


3 BOYUTLU KRİYOBİYOBASKI YÖNTEMİ İLE ÜRETİLMİŞ DOKULAR İHTİYAÇ ANINA KADAR DONDURUCUDA SAKLANABİLECEK!


3 boyutlu dokuların kısa raf ömürleri, klinik kullanımını sınırlandırmaktadır. Organ nakli durumunda, biyobaskı yöntemiyle üretilmiş dokunun ihtiyaç duyulan yere hızlı bir şekilde nakledilmesi gerekmektedir. Aksi takdirde 3 boyutlu doku, canlılığını kaybedecektir. 


Araştırmacılar -196 °C sıcaklığa sahip dondurucuda saklanabilen ve ihtiyaç anında kullanılmak üzere dakikalar içinde çözülebilen dokular oluşturmak için 3 boyutlu biyobaskı ile kriyoprezervatif tekniğini birleştiren bir çalışma yayınladı.


Biyomedikal mühendisi Y. Shrike Zhang , geleneksel biyobaskı yönteminde raf ömrünün olmadığını, 3B dokuların biyobaskıdan sonra kullanıldığını söylüyor. Kriyobiyobaskı yöntemi ile istediğiniz kadar biyobaskı yapabilir ve ürünleri donmuş durumda saklayabilirsiniz.


Belirlenmiş şekli oluşturmak için biyomürekkep nozuldan akıtılarak, yapının katman katman oluşması sağlanır. Biyomürekkep canlı hücrelerin gömülü olduğu jelatin benzeri yapı iskelesinden oluşmaktadır. Kriyobiyobaskıda ise, hidrojel -20 °C sıcaklıkta tutulan soğuk bir plakanın üzerine yapılır. Dokular yazdırıldıktan sonra uzn süreli saklama için kriyojenik koşullara taşınır.


Düşük sıcaklıklarda yapılan biyobaskı, karmaşık şekiller oluşturulmasına imkan sağlar. Soğuk plaka üzerine basılan biyomürekkep milisaniyeler içinde donar ve yapı orijinal şeklini kaybetmez. Bu sayede kendi ağırlığına dayanabilen bağımsız 3 boyutlu yapılar oluşur.


Hücrelerin kriyojenik sıcaklıklarda hayatta kalabilmesi için ozmotik şoku önleyen ve hücre zarına zarar verebilecek buz kristallerinin oluşumunu sınırlayan bir kriyoprezervatif ajan kullanılmalıdır. Y. Shrike Zhang ve ekibi, en yüksek hücre canlılığını sağlayan kriyoprezervatif ajanların kombinasyonunu da araştırmışlardır. 


Dokuların hayata döndürülmeden önce en az 3 ay dayanabileceği gösterilmiştir. Biyobaskı yöntemiyle üretilen dokular, uzun süre dondurulabilecek ve araştırmacılar arasında bu uygulamaları geliştirmek için daha fazla işbirliğine olanak sağlayacaktır.


REFERENCES


3D-bioprinted tissues can now be stored in the freezer until needed

Hossein Ravanbakhsh

Zeyu Luo

Sushila Maharjan

Guosheng Tang

Carolina Chávez-Madero

Luc Mongeau

ScienceDaily












Comments

Popular posts from this blog

3D BIOPRINTING TECHNIQUE CONTROLS CELL ORIENTATION!  Using 3D bioprinting technology, tissue scaffolds that mimic tissues can be printed. Controlling cellular organization in these scaffolds designed for tissue engineering studies is a complex and challenging process. Produced cellular scaffolds must perform like natural tissues. To achieve this, cells must have a regular structure in terms of spatial distribution and alignment. In this study, cellular orientation was controlled by the technique developed for fast, simple and cost-effective printing of multi-compartment hydrogel fibers. Alginate and GELMA hydrogel fibers were printed in the determined pattern with the static mixer integrated into the coaxial microfluidic system. In the engineered microstructure, GelMA chambers provide a suitable environment for the cell, while alginate chambers offer morphological and mechanical properties that guide cellular orientation. It has been demonstrated in this study that cellular alignment c
RESEARCHERS USED A NEW TECHNOLOGY FOR BIOPRINTING ADULT NEURON CELLS! A group of researchers has managed to maintain a high level of cell viability and functionality by using laser-assisted bioprinting technology to print adult neuron cells. The method known as laser-induced side-transfer (LIST) enables three-dimensional bioprinting with higher efficiency by improving existing bioprinting techniques using bioinks with different viscosities. In the study, dorsal root ganglion (DRG) neurons from the peripheral nervous system of mice were used. Neurons suspended in bioink were loaded into a square capillary located on a biocompatible substrate. Low-energy laser pulses focused on the midpoint of the capillary, printing the cell-loaded bioink in droplets. Figure 1. Bioprinting system After bioprinting, different tests were applied. In the viability test, it was concluded that 86 percent of the cells survived two days after printing. The researchers note that when using low-energy laser puls
NOSE CARTRIDGE PRINTED WITH 3D BIOPRINTING TECHNOLOGY! A team of University of Alberta researchers has produced a specially shaped cartilage u sing three-dimensional bioprinting technology  that can be used in surgical applications. The hydrogel prepared with cells taken from the patient was used in bioprinting. Surgeons reshape the cartilage taken from the patient's ribs to fit the size and shape required for reconstructive surgery and transplant the patient. With this traditional procedure, however, there is a risk of complications in the patient. The other problem is that the rib compartment that protects the lungs needs to be opened to reconstruct the nose. This region has a vital anatomical importance. The patient's lungs may have collapsed. Researchers say that this study is an example of regenerative medicine. The cartilage, which is specially printed for the patient and grown in the laboratory, has the potential to eliminate the risk of collapse in the lungs, infection