Skip to main content

NOSE CARTRIDGE PRINTED WITH 3D BIOPRINTING TECHNOLOGY!


A team of University of Alberta researchers has produced a specially shaped cartilage using three-dimensional bioprinting technology that can be used in surgical applications. The hydrogel prepared with cells taken from the patient was used in bioprinting.

Surgeons reshape the cartilage taken from the patient's ribs to fit the size and shape required for reconstructive surgery and transplant the patient. With this traditional procedure, however, there is a risk of complications in the patient. The other problem is that the rib compartment that protects the lungs needs to be opened to reconstruct the nose. This region has a vital anatomical importance. The patient's lungs may have collapsed.

Researchers say that this study is an example of regenerative medicine. The cartilage, which is specially printed for the patient and grown in the laboratory, has the potential to eliminate the risk of collapse in the lungs, infection and scarring in the rib area. Advances in 3D bioprinting technology enable cartilage printing with anatomically shaped configurations and customizable sizes. In this study, the FRESH method was used as the bioprinting technology, and the bioink content includes type 1 collagen hydrogel and nasoseptal chondrocytes.

Adesida stated that with a biopsy taken from the patient's nose, special cartilage can be produced for them, and that they can do everything necessary in the surgical operation with bioprinting technology by using the cells.

The team continues their research. It is tested whether the printed cartilage retains its properties after transplantation into animal models. The researchers hope to move the study into a clinical trial in the next two to three years.

3D Bioprinted Structure


3 BOYUTLU BİYOBASKI TEKNOLOJİSİYLE BURUN KIKIRDAĞI BASILDI!


Alberta Üniversitesi araştırmacılarından oluşan bir ekip, üç boyutlu biyobasım teknolojisini kullanarak cerrahi uygulamalarda kullanılabilecek özel şekilli bir kıkırdak üretti. Hastadan alınan hücrelerle hazırlanan hidrojel, biyobaskıda kullanıldı.

Cerrahlar, hastanın kaburgalarından alınan kıkırdağı rekonstrüktif cerrahi için gerekli boyut ve şekle uyacak şekilde yeniden şekillendirerek hastaya nakil gerçekleştirmektedir. Bu geleneksel prosedürde ise hastada komplikasyonların meydana gelme riski bulunmaktadır. Diğer problem ise, burnu yeniden yapılandırmak için akciğerleri koruyan kaburga bölmesinin açılması gerekmektedir. Bu bölge anatomik olarak hayati bir öneme sahiptir. Hastanın akciğerleri çökmüş olabilir.

Araştırmacılar, bu çalışmanın rejeneratif tıp örneği olduğunu dile getiriyor. Hastaya özel olarak basılan ve laboratuvarda yetiştirilen kıkırdak, akciğerlerdeki çökme, enfeksiyon ve kaburga bölgesinde oluşan yara izi riskini ortadan kaldırma potansiyeli taşıyor. 3 boyutlu biyobaskı teknolojisindeki gelişmeler, anatomik olarak şekillendirilmiş konfigürasyonlarla ve özelleştirilebilir boyutlarda kıkırdak basımına olanak sunmaktadır. Bu çalışmada biyobaskı teknolojisi olarak FRESH metodu kullanılmış olup biyomürekkep içeriğinde ise tip 1 kolajen hidrojeli ve nazoseptal kondrositler bulunmaktadır. 

Adesida, hastanın burnundan alınan bir biyopsiyle, onlara özel kıkırdak üretilebileceğini, hücrelerin de kullanılarak cerrahi operasyonda gereken her şeyi biyobaskı teknolojisiyle yapabileceklerini ifade etti.

Ekip, araştırmalarına devam ediyor. Basımı gerçekleştirilen kıkırdağın hayvan modellerine naklinden sonra özelliklerini koruyup korumadığı test ediliyor. Araştırmacılar, çalışmayı önümüzdeki iki-üç yıl içinde bir klinik araştırmaya taşımayı umuyor.

REFERENCES

3D 'bioprinting' used to create nose cartilage

Bioprinting of human nasoseptal chondrocytes-laden collagen hydrogel for cartilage tissue engineering

Xiaoyi Lan

Yan Liang

Esra J. N. Erkut

Melanie Kunze

Aillette Mulet-Sierra

Tianxing Gong

Martin Osswald

Khalid Ansari

Hadi Seikaly

Yaman Boluk

Adetola B. Adesida

Comments

Popular posts from this blog

3D BIOPRINTING TECHNIQUE CONTROLS CELL ORIENTATION!  Using 3D bioprinting technology, tissue scaffolds that mimic tissues can be printed. Controlling cellular organization in these scaffolds designed for tissue engineering studies is a complex and challenging process. Produced cellular scaffolds must perform like natural tissues. To achieve this, cells must have a regular structure in terms of spatial distribution and alignment. In this study, cellular orientation was controlled by the technique developed for fast, simple and cost-effective printing of multi-compartment hydrogel fibers. Alginate and GELMA hydrogel fibers were printed in the determined pattern with the static mixer integrated into the coaxial microfluidic system. In the engineered microstructure, GelMA chambers provide a suitable environment for the cell, while alginate chambers offer morphological and mechanical properties that guide cellular orientation. It has been demonstrated in this study that cellular alignment c
RESEARCHERS USED A NEW TECHNOLOGY FOR BIOPRINTING ADULT NEURON CELLS! A group of researchers has managed to maintain a high level of cell viability and functionality by using laser-assisted bioprinting technology to print adult neuron cells. The method known as laser-induced side-transfer (LIST) enables three-dimensional bioprinting with higher efficiency by improving existing bioprinting techniques using bioinks with different viscosities. In the study, dorsal root ganglion (DRG) neurons from the peripheral nervous system of mice were used. Neurons suspended in bioink were loaded into a square capillary located on a biocompatible substrate. Low-energy laser pulses focused on the midpoint of the capillary, printing the cell-loaded bioink in droplets. Figure 1. Bioprinting system After bioprinting, different tests were applied. In the viability test, it was concluded that 86 percent of the cells survived two days after printing. The researchers note that when using low-energy laser puls